- #1
LeoJakob
- 21
- 1
Thread moved from the technical forums to the schoolwork forums
- Homework Statement
- rotation of macroscopic magnetization = averege (Magnetization current density )
- Relevant Equations
- ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##
,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##
,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##
, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$
Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$
Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$
$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$
I don’t have more ideas right now, can someone help me?
rotation of macroscopic magnetization = averege (Magnetization current density )
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$
Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$
Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$
$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$
I don’t have more ideas right now, can someone help me?
Last edited: