- #1
Rayan
- 16
- 1
- Homework Statement
- A beam of atoms with ##l=1## (##s= 0##) is traveling along the y-axis and passes through a Stern-Gerlach magnet A with its (mean) magnetic field along the x-axis. The emerging beam with ##m_x= 1## is separated from the other two beams. (The eigenvalue of ##L_x## for the atoms in this beam is ##\hbar m_x = \hbar##). The beam is then passed through a second Stern-Gerlach magnet with the magnetic field along the z-axis. Into how many beams is the beam further split and what the relative number of atoms in each beam? What would be the result if the ##m_x= 0## beam instead passed through a second magnet with the magnetic field along the z_axis?
- Relevant Equations
- .
So I thought that when the $m_l = 1$ beam passes through the second SG-magnet, it should split into 3 different beams with equal probability corresponding to $ m_l = -1 , 0 , 1 $ since the field here is aligned along z-axis and hence independent of the x-axis splitting.
And I thought that the same should happen if the $m_x=0$ beam passes through the second magnet? but I'm not as sure here!
and then there is a hint that says I should determine the eigenstates of the $L_x$ operator first! But I don't get why? Any advice?
And I thought that the same should happen if the $m_x=0$ beam passes through the second magnet? but I'm not as sure here!
and then there is a hint that says I should determine the eigenstates of the $L_x$ operator first! But I don't get why? Any advice?