- #1
astroholly
- 1
- 0
- Homework Statement
- Derive the Hamiltonian, H([q][/1], [q][/2], [p][/1], [p][/1]), of a system that has the Lagrngian, L(q_1, q_2, \dot{q_1}, \dot{q_2}) = \dot{q_1}^2 + 0.5 \dot{q_2}^2 + 3q_1^2 + \dot{q_1} * \dot{q_2}
- Relevant Equations
- H(q_1, q_2, p_1, p_2) = sum over i (p_i \dot{q_i}) - L
L(q_1, q_2, \dot{q_1}, \dot{q_2}) = \dot{q_1}^2 + 0.5 \dot{q_2}^2 + 3q_1^2 + \dot{q_1} * \dot{q_2}
I have found the Hamiltonian to be ##H = L - 6 (q_1)^2## using the method below:
1. Find momenta using δL/δ\dot{q_i}
2. Apply Hamiltonian equation: H = sum over i (p_i \dot{q_i}) - L 3(q_1)^2. Simplifying result by combining terms
4. Comparing the given Lagrangian to the resulting Hamiltonian I found H =\dot{q_1}^2 + 0.5 \dot{q_2}^2 + \dot{q_1} * \dot{q_2} - 3q_1^2 = L - 6(q_1)^2 This is wrong because my Hamiltonian should be in terms of generalised coordinate and momentum only: H(q_1, q_2, p_1, p_2). What am I neglecting?
1. Find momenta using δL/δ\dot{q_i}
2. Apply Hamiltonian equation: H = sum over i (p_i \dot{q_i}) - L 3(q_1)^2. Simplifying result by combining terms
4. Comparing the given Lagrangian to the resulting Hamiltonian I found H =\dot{q_1}^2 + 0.5 \dot{q_2}^2 + \dot{q_1} * \dot{q_2} - 3q_1^2 = L - 6(q_1)^2 This is wrong because my Hamiltonian should be in terms of generalised coordinate and momentum only: H(q_1, q_2, p_1, p_2). What am I neglecting?
Attachments
Last edited: