Slope of a mountain ridge (Gradient)

  • Thread starter Lambda96
  • Start date
  • Tags
    Slope
  • #1
Lambda96
156
59
Homework Statement
Write ##h(r)=H## as ##y(H,x)##

and

Calculate steepest and flattest slope with ##|| \nabla h(r) ||##
Relevant Equations
none
Hi

I am not quite sure if I have calculated the whole task correctly, since I am not sure whether I have solved task e correctly and unfortunately have problems with task f

Bildschirmfoto 2023-12-12 um 15.44.42.png

The function h(r) looks like this ##h(r)=\frac{x}{\sqrt{x^2+y^2}}+1##

I got the following for the gradient

##\nabla h(r)=\left(\begin{array}{c} -\frac{x^2}{(x^2+y^2)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^2+y^2}} \\ - \frac{xy}{(x^2+y^2)^{\frac{3}{2}}} \end{array}\right)##

and the plot for contour lines looks like this:

Bildschirmfoto 2023-12-12 um 12.13.22.png


##\textbf{Task e}##

I then solved the equation ##h(r)=H## for y as follows ##y(H,x)= \sqrt{\frac{x^2}{(H-1)^2}-x^2}## The shape of the contour lines in the first square are all straight lines

I could only see that they are straight lines from the contour lines plot and not from the equation above, did I calculate y(H,x) incorrectly?

##\textbf{Task f}##

The amount of the gradient should be calculated as follows

##|| \nabla h(r) ||=\sqrt{\biggl( -\frac{x^2}{(x^2+y^2)^{\frac{3}{2}}} + \frac{1}{\sqrt{x^2+y^2}} \biggr)^2 + \biggl( -\frac{xy}{(x^2+y^2)^{\frac{3}{2}}} \biggr)^2}##

and then got the following

##|| \nabla h(r) ||= \sqrt{\frac{y^2}{(x^2+y^2)^2}}##

For the steepest and flattest slope, I have to insert the points into the above equation where the gradient is zero, so ##\nabla h(r)= \left(\begin{array}{c} 0 \\ 0 \\ \end{array}\right)## I have calculated these points with mathematica and if I have not made a mistake, unfortunately only complex solutions come out

Bildschirmfoto 2023-12-12 um 16.25.08.png

Have I made a mistake in calculating the steepest or flattest ascent or can I only do this with ##|| \nabla h(r) ||##?
 
Physics news on Phys.org
  • #2
In polar coordinates [itex]x = r \cos \theta, y = r \sin \theta[/itex] for [itex]-\pi \leq \theta < \pi[/itex] we have [tex]h(r, \theta) = 1 + \cos \theta.[/tex] It follows that [tex]\nabla h = -\frac{\sin \theta}{r}\mathbf{e}_\theta = - \frac{y}{r^2}(-y/r, x/r)^T[/tex] and [tex]\|\nabla h\| = \frac{|\sin \theta|}{r} = \frac{|y|}{x^2 + y^2}.[/tex] This is zero whenever [itex]y = 0[/itex] (and is undefined at the origin).

I suspect the fact that [itex]\nabla h[/itex] has degenerate (ie, non-isolated) zeros is confusing whatever algorithm Mathematica is using to solve [itex]\nabla h = 0[/itex]. Think before you compute!
 
  • Like
Likes Lambda96
  • #3
Thank you pasmith for your help 👍

Where the gradient is zero, there is either a maximum and minimum, the magnitude of the gradient is then also zero.

As you have already written, this would be the case for ##y=0##. If I now insert ##y=0## into the equation ##h(r)##, I get ##h(x,0)=\frac{x}{\sqrt{x^2}}+1## and is either zero for ##x<0## or 2 for ##x>0##

So the steepest slope would be 2 and the flattest 0
 
  • #4
Lambda96 said:
Thank you pasmith for your help 👍

Where the gradient is zero, there is either a maximum and minimum, the magnitude of the gradient is then also zero.

As you have already written, this would be the case for ##y=0##. If I now insert ##y=0## into the equation ##h(r)##, I get ##h(x,0)=\frac{x}{\sqrt{x^2}}+1## and is either zero for ##x<0## or 2 for ##x>0##

So the steepest slope would be 2 and the flattest 0

"Steepest slope" is where the magnitude of the gradient is maximal, and "flattest slope" is where the magnitude of the gradient is minimal. You can see from my earlier post that [itex]\|\nabla h\|[/itex] increases without limit as [itex]r \to 0[/itex] for [itex]y \neq 0[/itex] and is zero when [itex]y = 0[/itex].
 
  • Like
Likes Lambda96
  • #5
pasmith said:
This is zero whenever y=0 (and is undefined at the origin).
Do you mean "(except that it is undefined at the origin)"?
 
  • #6
Thank you pasmith for your help 👍
 

Similar threads

  • Advanced Physics Homework Help
Replies
19
Views
799
  • Advanced Physics Homework Help
Replies
13
Views
2K
Replies
2
Views
945
  • Advanced Physics Homework Help
Replies
6
Views
855
  • Advanced Physics Homework Help
Replies
19
Views
668
  • Advanced Physics Homework Help
Replies
3
Views
260
  • Advanced Physics Homework Help
Replies
9
Views
1K
  • Advanced Physics Homework Help
Replies
5
Views
799
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
2
Replies
44
Views
3K
Back
Top