Proving the Commutation Relation for Quantized Boson in a One-Dimensional Box

  • Thread starter Hill
  • Start date
  • Tags
    quantized
  • #1
Hill
Homework Helper
Gold Member
518
420
Homework Statement
Show for a boson particle in a box of volume ##V## that $$\frac 1 V \sum_{\mathbf{pq}} e^{i(\mathbf{px}-\mathbf{qy})}[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta^{(3)}(\mathbf x - \mathbf y)$$
Relevant Equations
##[\hat a_{\mathbf p},\hat a^\dagger_{\mathbf q}]=\delta_{\mathbf{pq}}##
To simplify, I consider a one-dimensional box of the size L. I need to show in this case that
$$\frac 1 L \sum_{pq} e^{i(px-qy)}[\hat a_p,\hat a^\dagger_q]=\delta(x -y)$$
With the commutation relation above, it becomes
$$\frac 1 L \sum_p e^{ip(x-y)}=\delta(x -y)$$
p is quantized: ##p_m=\frac {2\pi m} L##

So I need to show that
$$\frac 1 L \sum_m e^{i \frac {2\pi m} L (x-y)}=\delta(x -y)$$
If ##x \neq y## the sum is ##0##, but I don't know how to proceed otherwise.
A hint?
 
Last edited:
  • Like
Likes vanhees71
Physics news on Phys.org
  • #2
Got it.

##\langle x|p \rangle= \frac 1 {\sqrt L} e^{ipx}##
and
##\langle p|y \rangle= \frac 1 {\sqrt L} e^{-ipy}##

OOH,
##\langle x|y \rangle = \delta(x-y)##

OTOH, inserting the resolution of identity,
##\langle x|y \rangle = \sum_p \langle x|p \rangle \langle p|y \rangle=\frac 1 L \sum_p e^{ip(x-y)}##

Thus,
##\frac 1 L \sum_p e^{ip(x-y)}=\delta(x-y)##
 
Last edited:
  • Like
Likes vanhees71

Similar threads

  • Advanced Physics Homework Help
Replies
1
Views
638
Replies
1
Views
736
  • Advanced Physics Homework Help
Replies
2
Views
120
  • Advanced Physics Homework Help
Replies
1
Views
863
  • Advanced Physics Homework Help
Replies
7
Views
1K
  • Advanced Physics Homework Help
Replies
15
Views
2K
  • Advanced Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
2
Views
1K
  • Advanced Physics Homework Help
Replies
1
Views
1K
Back
Top