- #1
RChristenk
- 45
- 4
- Homework Statement
- Show that if ##x>1##, ##\log_e\sqrt{x^2-1}=\log_ex-\dfrac{1}{2x^2}-\dfrac{1}{4x^2}-\dfrac{1}{6x^6}-\cdots##
- Relevant Equations
- Logarithm Rules, Logarithmic Series
##\log_e\sqrt{x^2-1}=\dfrac{1}{2}[\log_e[(x+1)(x-1)]]=\dfrac{1}{2}[\log_e(x+1)+\log_e(x-1)]##.
##\Rightarrow \log_e(x-1)=\log_e[x(1-\dfrac{1}{x})]=\log_ex+\log_e(1-\dfrac{1}{x})##
We know:
##\log_e(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots##
##\log_e(1-x)=-x-\dfrac{x^2}{2}-\dfrac{x^3}{3}-\cdots##
Hence:
##\dfrac{1}{2}[\log_e(x+1)+\log_e(x-1)]=\dfrac{1}{2}[\log_e(1+x)+\log_ex+\log_e(1-\dfrac{1}{x})]##
##\Rightarrow \dfrac{1}{2}(x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+\log_ex-\dfrac{1}{x}-\dfrac{(\dfrac{1}{x})^2}{2}-\dfrac{(\dfrac{1}{x})^3}{3}-\cdots)##
##\Rightarrow \dfrac{1}{2}(\log_ex+x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots-\dfrac{1}{x}-\dfrac{1}{2x^2}-\dfrac{1}{3x^3}-\cdots)##
This is as far as I got. I'm not sure how to perform the necessary algebra to get to
##\log_ex-\dfrac{1}{2x^2}-\dfrac{1}{4x^2}-\dfrac{1}{6x^6}-\cdots##.
##\Rightarrow \log_e(x-1)=\log_e[x(1-\dfrac{1}{x})]=\log_ex+\log_e(1-\dfrac{1}{x})##
We know:
##\log_e(1+x)=x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots##
##\log_e(1-x)=-x-\dfrac{x^2}{2}-\dfrac{x^3}{3}-\cdots##
Hence:
##\dfrac{1}{2}[\log_e(x+1)+\log_e(x-1)]=\dfrac{1}{2}[\log_e(1+x)+\log_ex+\log_e(1-\dfrac{1}{x})]##
##\Rightarrow \dfrac{1}{2}(x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots+\log_ex-\dfrac{1}{x}-\dfrac{(\dfrac{1}{x})^2}{2}-\dfrac{(\dfrac{1}{x})^3}{3}-\cdots)##
##\Rightarrow \dfrac{1}{2}(\log_ex+x-\dfrac{x^2}{2}+\dfrac{x^3}{3}-\cdots-\dfrac{1}{x}-\dfrac{1}{2x^2}-\dfrac{1}{3x^3}-\cdots)##
This is as far as I got. I'm not sure how to perform the necessary algebra to get to
##\log_ex-\dfrac{1}{2x^2}-\dfrac{1}{4x^2}-\dfrac{1}{6x^6}-\cdots##.