- #1
brotherbobby
- 579
- 147
- Homework Statement
- Find the domain (and range) of ##y = \log_{(x-4)}(x^2-11x+24)##
- Relevant Equations
- Given the function ##y = \log_a x##, we have the following domain ##x>0## and the base ##a>0\quad (a\ne 1)##. The range of the function ##y\in \mathbb{R}##.
Attempt : I could evaluate the domain.
The base of the function ##x-4>0\Rightarrow x>4.\hspace{60 pt} (1)##
The function ##x^2-11x+24>0\Rightarrow (x-3)(x-8)>0\Rightarrow x<3\quad \rm{or}\quad x>8\hspace{60 pt} (2).##
From ##(1)\;\rm{and}\;(2)##, we have to reject ##\cancel{x<3}##. Also ##(1)\;\rm{and}\;(2)## must hold simultaneously, similar to an ##\rm{AND}## in between them. That leaves us with ##\boxed{x>8}## as the domain, or writing it nicely : ##\text{Domain of}\; y\mapsto \boxed{x\in(8,\infty)}.\quad \huge{\color{green}{\checkmark}}##
Doubt : ##\qquad\textsf{How to find the range?}##
The given function is ##y = \log_{(x-4)}(x^2-11x+24)##. We know that ##x>8##. Let me put ##x=8+\epsilon, \quad(\epsilon>0)##. We have ##y = \log_{\epsilon+4}[\epsilon(\epsilon+5)]##. How does one evaluate this in the limit ##\epsilon\to 0##?
I tried with a two values of ##\epsilon=10^{-3}, 10^{-6}##. I got answers of ##-3.8, -8.8## respectively.
I have put ##\epsilon+4 = x##.
Here is the graph from ##\texttt{Desmos}##. The range of the function turns out to be ##\boxed{y\in(-\infty, 2)}##
Request : A hint as to how to evaluate the limit of the function ##\displaystyle{\lim_{x\to 0} \log_x (x-4)(x+1)}##.
Last edited: