- #1
RChristenk
- 45
- 4
- Homework Statement
- Show that ##^{n+1}C_r=^nC_r+^nC_{r-1}##
- Relevant Equations
- Basic combination theory
##^nC_r=\dfrac{n(n-1)(n-2)...(n-r+2)(n-r+1)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}##
##^nC_{r-1}=\dfrac{n(n-1)(n-2)...(n-r+2)}{1\cdot2\cdot3...\cdot(r-1)}##
##^nC_r+^nC_{r-1}=\dfrac{[n(n-1)(n-2)...(n-r+2)](n-r+1+r)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}=\dfrac{(n+1)(n)(n-1)...(n-r+2)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}##
But ##^{n+1}C_r=\dfrac{(n+1)(n)(n-1)...(n-r+1)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}##
So where did I go wrong? Thanks.
##^nC_{r-1}=\dfrac{n(n-1)(n-2)...(n-r+2)}{1\cdot2\cdot3...\cdot(r-1)}##
##^nC_r+^nC_{r-1}=\dfrac{[n(n-1)(n-2)...(n-r+2)](n-r+1+r)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}=\dfrac{(n+1)(n)(n-1)...(n-r+2)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}##
But ##^{n+1}C_r=\dfrac{(n+1)(n)(n-1)...(n-r+1)}{1\cdot2\cdot3...\cdot(r-1)\cdot r}##
So where did I go wrong? Thanks.