- #1
brotherbobby
- 579
- 147
- Homework Statement
- State and domain and range for the following function : ##g(x) = \dfrac{1}{1+x^2}##
- Relevant Equations
- The domain of a function, which I'd write as ##\mathscr{D}\{f(x)\}## are all acceptable values that ##x## can take so that the function is defined. The range of a function, ##\mathscr{R}\{f(x)\}## are all values of the function for the values of ##x## in the domain.
Shown is the answer in the text (part (b)).
The range can be calculated in a number of ways. It is the third way with which I have a problem and need your input.
##\rm{I :}## ##\textsf{Here I proceed towards the function incrementally without finding its inverse}##
\begin{align*}
-\infty &< x< \infty \\
\Rightarrow 0 &\le x^2 < \infty \\
\Rightarrow 1&\le1+x^2 < \infty \\
\Rightarrow 0&<\dfrac{1}{1+x^2}\le 1\\
\end{align*} Hence the range of the function ##\boxed{\mathscr{R}\{f(x)\}\in (0,1]}\quad\color{green}{\Large{\checkmark}}##. The answer in the text (shown above) is wrong to include the point ##0##, or it is me mistaken?
##\rm{II :}## ##\textsf{Here I find the inverse of the function first and then try to find the domain of the inverse, or y}##
If ##y=\dfrac{1}{1+x^2}\Rightarrow 1+x^2=\dfrac{1}{y}\Rightarrow x^2=\dfrac{1-y}{y}\Rightarrow x=\sqrt{\dfrac{1-y}{y}}##
Clearly, ##y\ne 0##. Also the argument ##\dfrac{1-y}{y}\ge0##. This can mean either (a) ##1-y\ge0## and ##y>0## which would lead to ##y\le1## and ##y>0##, which leads to the correct range found earlier : ##\boxed{\mathscr{R}\{f(x)\}\in (0,1]}\quad\color{green}{\Large{\checkmark}}##. Or it could also mean (b) ##1-y\le 0\Rightarrow y\ge 1## and ##y<0##, which is not possible.
##\rm{III :}## ##\textsf{A variant of the above method where I find the inverse again, but leads me to trouble}##
If ##y=\dfrac{1}{1+x^2}\Rightarrow 1+x^2=\dfrac{1}{y}\Rightarrow x^2=\dfrac{1}{y}-1\Rightarrow x=\sqrt{\dfrac{1}{y}-1}##. Now ##\dfrac{1}{y}-1\ge 0\Rightarrow \dfrac{1}{y}\ge 1\Rightarrow y\le 1##. Hence, the range comes out to be ##\boxed{\mathscr{R}\{f(x)\}\in (-\infty,1]}\quad\color{red}{\huge{\times}}##
Request : Where did I go wrong in ##\textrm{III}##? Many thanks.
Last edited: