- #1
Aurelius120
- 151
- 16
- Homework Statement
- Let A,B,C are three points with position vectors $$a=\hat i+4\hat j+3\hat k$$ $$b=2\hat i+\alpha \hat j+4\hat k,$$ $$ c=3\hat i-2\hat j+5\hat k $$respectively .##\alpha \in R ##. If ##\alpha ## is the smallest positive integer for ##a,b,c## to be non-collinear, length of median through ##A## of ##\Delta ABC## is:
- Relevant Equations
- Equation of line in vector form : ##\vec r= \vec a+t(\vec b-\vec a)## if ##\vec a## and ##\vec b## are position vectors of two points on that line .
Magnitude of vector=##\sqrt{x^2+y^2+z^2}##
Heres how I proceeded,
Equation of line ##AC## in vector form:
$$\vec r=a+t(c-a)$$$$\vec r=(1i+4j+3k)+t(2i-6j+2k)$$
Since ##B## doesn't lie on ##AC## ##b\neq (1+2t)i +(4-6t)j+(3+2t)k##
The following equation is derived:
$$2\hat i+\alpha \hat j+4\hat k\neq (1+2t)\hat i +(4-6t)\hat j+(3+2t)\hat k $$
How do I further solve this to obtain ##\alpha##?
Once ##\alpha## is found, mid-point of ##BC## can be found using coordinate geometry. The magnitude of vector ##|\vec {AM}|## is required length of median.
Is there any alternate preferably easier/faster method to solve this?