- #1
brotherbobby
- 579
- 147
- Homework Statement
- Calculate the component of a vector ##\vec A = \hat i+\hat j+5\hat k## perpendicular to ##\vec B = 3\hat i + 4\hat j##.
- Relevant Equations
- 1. The vector ##\vec B'## perpendicular to ##\vec B## is such that ##\vec B'\cdot \vec B = 0##.
2. The (vector) component of a vector ##\vec A## along a vector ##\vec B'## is ##(\vec A)_{B'}=(A\cos\theta_{AB'})\hat B##.
Attempt : By inspection, we find that the vector ##\vec B'## perpendicular to ##\vec B = 3\hat i+4\hat j## is ##\boldsymbol{\vec B' = 4\hat i -3\hat j}##, remembering that for perpendicular vectors ##\vec B## and ##\vec B'##, ##\vec B\cdot \vec B' = 0##.
The vector component of ##(\vec A)_{B'}=(A\cos\theta_{AB'})\hat B'=\left(\frac{\vec A\cdot \vec B'}{B'} \right)\hat B'##.
Now ##\vec A\cdot \vec B'=\frac{1}{5}##, ##B' = B = 5## and ##\hat B' =\frac{4\hat i- 3\hat j}{5}##.
Thus ##\boxed{(\vec A)_{B'}= \frac{1}{25}\left( \frac{4}{5}\hat i - \frac{3}{5}\hat j\right)}##.Doubt : My answer is at odds with that of the text, which I copy and paste below.