- #1
docnet
Gold Member
- 672
- 307
- Homework Statement
- Please see the red step, I don't think it's a correct step because the parts don't add up right.
- Relevant Equations
- .
Let ##N_t## be the Poisson point process with the probability of the random variable ##N_t## being equal to ##x## is given by $$\frac{(\lambda t)^xe^{-\lambda t}}{x!}.$$ ##N_t## has stationary and independent increments, so for any ##\alpha\geq 0, t\geq 0,## the distribution of ##X_t = N_{t+\alpha} -N_t## is independent of ##t.##
I'm trying to show this explicitly.
$$
\begin{align*}
X_{t}&= N_{t+\alpha}-N_{t} \\
&= N_{t} + N_\alpha -N_{t} \\
&= N_\alpha \\
&=\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} .
\end{align*}$$
I don't think it's correct because
$$\begin{align*}
N_{t} + N_\alpha &= \frac{(\lambda t)^xe^-{\lambda t}}{x!} +\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} \\
&\neq \frac{(\lambda (t+\alpha))^xe^{-\lambda (t+\alpha)}}{x!}= N_{t+\alpha} .
\end{align*}$$
I'm trying to show this explicitly.
$$
\begin{align*}
X_{t}&= N_{t+\alpha}-N_{t} \\
&= N_{t} + N_\alpha -N_{t} \\
&= N_\alpha \\
&=\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} .
\end{align*}$$
I don't think it's correct because
$$\begin{align*}
N_{t} + N_\alpha &= \frac{(\lambda t)^xe^-{\lambda t}}{x!} +\frac{(\lambda \alpha)^xe^{-\lambda \alpha}}{x!} \\
&\neq \frac{(\lambda (t+\alpha))^xe^{-\lambda (t+\alpha)}}{x!}= N_{t+\alpha} .
\end{align*}$$
Last edited: