- #1
Aurelius120
- 151
- 16
- Homework Statement
- Evaluate $$\lim_{n\rightarrow \infty}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........\frac{1}{n}}{n^2}\right)^n$$
- Relevant Equations
- $$\lim_{x \to{+}\infty}{f(x)^{g(x)}}=e^{\left(\lim_{x \to{+}\infty}{(f(x)-1)\cdot g(X)}\right)}$$ $$\text{if}\lim_{n\rightarrow \infty}f(x)=1\text{ and } \lim_{n\rightarrow \infty}g(x)=\infty$$
To use the formula above, I have to prove that $$\lim_{n\rightarrow \infty}f(x)=\lim_{n\rightarrow \infty}\left(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+........\frac{1}{n}}{n^2}\right)=1$$
To prove so, I tried using L'Hopital's Rule:
$$\lim_{n\rightarrow \infty}f(x)=\lim_{n\rightarrow \infty}\frac{-1n^{(-2)}}{2n}$$ But this gives zero.
To prove so, I tried using L'Hopital's Rule:
$$\lim_{n\rightarrow \infty}f(x)=\lim_{n\rightarrow \infty}\frac{-1n^{(-2)}}{2n}$$ But this gives zero.