- #1
Philip551
- 16
- 5
TL;DR Summary: I am taking a math methods course this semester of which a large part are PDEs. I don't understand the context behind the order in which we are solving PDEs. I am interested in learning how other people were taught PDEs and any book recommendations you might have.
I am taking a math methods course this semester of which a large part are PDEs. I don't understand the context behind the order in which we are solving PDEs.
What we have done thus far is solve the wave equation for the homogenous case and some non-homogenous cases. The methods we have used are separation of variables and eigenfunction expansions. I am not sure I understand the intuition behind certain steps we are taking to solve the equations e.g. letting the solution u(x,t) = w(x,t) + v(x).
In looking for other books that are available like Farlow and Strauss, I noticed that they use different methods like the method of characteristics and that they don't consider some of the problems we have solved to be important. I would be interested in hearing the order of how other people were taught PDEs, especially in terms of the physical intuition behind certain substitutions and if there are any introductory PDE book recommendations that focus on the physical intuition.
Also, I am also interested in recommendations for books on numerical methods for PDEs.
I am taking a math methods course this semester of which a large part are PDEs. I don't understand the context behind the order in which we are solving PDEs.
What we have done thus far is solve the wave equation for the homogenous case and some non-homogenous cases. The methods we have used are separation of variables and eigenfunction expansions. I am not sure I understand the intuition behind certain steps we are taking to solve the equations e.g. letting the solution u(x,t) = w(x,t) + v(x).
In looking for other books that are available like Farlow and Strauss, I noticed that they use different methods like the method of characteristics and that they don't consider some of the problems we have solved to be important. I would be interested in hearing the order of how other people were taught PDEs, especially in terms of the physical intuition behind certain substitutions and if there are any introductory PDE book recommendations that focus on the physical intuition.
Also, I am also interested in recommendations for books on numerical methods for PDEs.