- #1
deuteron
- 45
- 12
- TL;DR Summary
- why do we expand aound 0 for the multipole expansion?
For the multipole expansion of the electric potential, we expand ## \frac 1 {|\vec r-\vec r'|}## in the following way:
$$\frac 1 {|\vec r-\vec r'|} = \frac 1{\sqrt{(\vec r-\vec r')^2}} =\frac 1 {[ \vec r^2 +\vec r'^2 -2\vec r\cdot \vec r']^{-\frac 12}}=\frac 1{[\vec r^2 + \vec r'^2 - 2|\vec r||\vec r'| \cos\gamma]^{-\frac 12}}$$
Here, we define ##r_<=\min\{ |\vec r|,|\vec r'|\}## and ##r_>=\max\{|\vec r|,|\vec r'|\}##, and using the symmetry of the equation, we get:
$$ = \frac 1{[r_<^2 + r_>^2 -2r_<r_> \cos\gamma]^{\frac 12}} = \frac 1 {r_>} \frac 1 {[ 1 + (\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma]^{\frac 12}}= \frac 1 {r_>} [ 1+(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma] ^{-\frac 1 2}$$
Here, we expand ##[ 1+(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma] ^{-\frac 1 2}## with the expansion parameter ##(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma## around ##0## to get the expansion of ## \frac 1 {|\vec r-\vec r'|}## in terms of the Legendre polynomials.
What I don't understand here is, why do we expand around ##0##? Doesn't that mean that we let ##(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma=0##, which would mean, for ##(\frac {r_<}{r_>})\approx 1##, ##1-2\cos\gamma=0\ \Rightarrow\ 1=2\cos\gamma\ \Rightarrow\ \cos\gamma=\frac 12##. I don't understand what leads us to make the expansion around ##\cos\gamma= \frac 12##.
$$\frac 1 {|\vec r-\vec r'|} = \frac 1{\sqrt{(\vec r-\vec r')^2}} =\frac 1 {[ \vec r^2 +\vec r'^2 -2\vec r\cdot \vec r']^{-\frac 12}}=\frac 1{[\vec r^2 + \vec r'^2 - 2|\vec r||\vec r'| \cos\gamma]^{-\frac 12}}$$
Here, we define ##r_<=\min\{ |\vec r|,|\vec r'|\}## and ##r_>=\max\{|\vec r|,|\vec r'|\}##, and using the symmetry of the equation, we get:
$$ = \frac 1{[r_<^2 + r_>^2 -2r_<r_> \cos\gamma]^{\frac 12}} = \frac 1 {r_>} \frac 1 {[ 1 + (\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma]^{\frac 12}}= \frac 1 {r_>} [ 1+(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma] ^{-\frac 1 2}$$
Here, we expand ##[ 1+(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma] ^{-\frac 1 2}## with the expansion parameter ##(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma## around ##0## to get the expansion of ## \frac 1 {|\vec r-\vec r'|}## in terms of the Legendre polynomials.
What I don't understand here is, why do we expand around ##0##? Doesn't that mean that we let ##(\frac {r_<}{r_>})^2 -2(\frac {r_<}{r_>}) \cos\gamma=0##, which would mean, for ##(\frac {r_<}{r_>})\approx 1##, ##1-2\cos\gamma=0\ \Rightarrow\ 1=2\cos\gamma\ \Rightarrow\ \cos\gamma=\frac 12##. I don't understand what leads us to make the expansion around ##\cos\gamma= \frac 12##.