- #1
deuteron
- 45
- 12
- TL;DR Summary
- Mathematically, E & H fields are parallel to each other, then why do we take E & B for electromagnetic waves?
We have the following constitutive relations:
$$ \vec D= \epsilon_0 \vec E +\vec P$$
$$\vec B=\mu_0\vec H + \vec M$$
And Maxwell's equations are:
$$\nabla\cdot\vec D = \rho$$
$$\nabla\cdot \vec B=0$$
$$\nabla\times\vec E=-\frac{\partial\vec B}{\partial t}$$
$$\nabla\times\vec H=\vec j +\frac{\partial\vec D}{\partial t}$$
then why do every book (e.g.: Jackson, Griffith's) mention ##E## and ##B## fields when talking about electromagnetic waves and not the ##E## and ##H## waves?
$$ \vec D= \epsilon_0 \vec E +\vec P$$
$$\vec B=\mu_0\vec H + \vec M$$
And Maxwell's equations are:
$$\nabla\cdot\vec D = \rho$$
$$\nabla\cdot \vec B=0$$
$$\nabla\times\vec E=-\frac{\partial\vec B}{\partial t}$$
$$\nabla\times\vec H=\vec j +\frac{\partial\vec D}{\partial t}$$
then why do every book (e.g.: Jackson, Griffith's) mention ##E## and ##B## fields when talking about electromagnetic waves and not the ##E## and ##H## waves?