Power functional theory (PFT) vs traditional Dynamic DFT

  • I
  • Thread starter Astronuc
  • Start date
In summary, physicists from the University of Bayreuth have shown that power functional theory, in combination with artificial intelligence methods, performs substantially better than dynamic density functional theory in describing and predicting the dynamics of non-equilibrium systems. For over half a century, density functional theory has been a valuable tool in studying many-particle systems, but its limitations in non-equilibrium systems have been highlighted by this research. The research team at Bayreuth is working towards developing power functional theory to achieve the same precision and elegance in analyzing non-equilibrium systems as density functional theory does for equilibrium systems.
  • #1
Astronuc
Staff Emeritus
Science Advisor
2023 Award
21,869
6,259
Dynamic density functional theory "has weaknesses, as physicists from the University of Bayreuth have now shown in an article published in the Journal of Physics: Condensed Matter. Power functional theory proves to perform substantially better—in combination with artificial intelligence methods, it enables more reliable descriptions and predictions of the dynamics of non-equilibrium systems over time."

https://phys.org/news/2023-06-physi...hQVplcl7zlAoab8Qev-9Yq-Bhcz9UYrocQPXrouyg4mFI
Many-particle systems are all kind of systems composed of atoms, electrons, molecules, and other particles invisible to the eye. They are in thermal equilibrium when the temperature is balanced and no heat flow occurs. A system in thermal equilibrium changes its state only when external conditions change. Density functional theory is tailor-made for the study of such systems.

For more than half a century, it has proven its unrestricted value in chemistry and materials science. Based on a powerful classical variant of this theory, states of equilibrium systems can be described and predicted with high accuracy. Dynamic density functional theory (DDFT) extends the scope of this theory to non-equilibrium systems. This involves the physical understanding of systems whose states are not fixed by their external boundary conditions.

For ten years, the research team around Prof. Dr. Matthias Schmidt has been making significant contributions to the development of a still young physical theory, which has so far proven to be very successful in the physical study of many-particle systems: power functional theory (PFT). The physicists from Bayreuth are pursuing the goal of being able to describe the dynamics of non-equilibrium systems with the same precision and elegance with which classical density functional theory enables the analysis of equilibrium systems.

Perspective: How to overcome dynamical density functional theory​

https://iopscience.iop.org/article/10.1088/1361-648X/accb33
 
  • Informative
Likes Lord Jestocost

Similar threads

Replies
2
Views
1K
  • Atomic and Condensed Matter
Replies
1
Views
1K
  • Quantum Interpretations and Foundations
Replies
3
Views
1K
Replies
1
Views
633
  • Quantum Interpretations and Foundations
Replies
5
Views
2K
  • Atomic and Condensed Matter
Replies
9
Views
2K
Replies
1
Views
534
  • Quantum Physics
Replies
1
Views
710
  • Beyond the Standard Models
Replies
11
Views
2K
  • Quantum Interpretations and Foundations
Replies
0
Views
1K
Back
Top