- #1
givingup
- 12
- 0
I'm not sure I understand how to correctly scale flux density with redshift. That is, if I observe say 10 Jy at my observing frequency coming from a source at z = 0.3, how can I estimate the flux density I would expect from the same source at z=2? From what I understand, the final scaling is given by
$$S \propto \frac{1}{(1+z)}$$,
but I'm not sure I understand how that comes about. I believe there are two factors of 1/(1+z) due to the photon energy and time dilation, but I'm not sure what other factors to take into account, such that it reduces to only one factor of (1+z) in the denominator.
Furthermore, it seems strange to me that in the example I give, a 10 Jy source at z=0.3 is only dimmed to a flux density of 4.3 Jy at z=2. Doesn't this suggest that one could in principle see this source to very extreme redshifts (pending the sensitivity of the instrument, of course). Or have I made a mistake in the scaling?
$$S \propto \frac{1}{(1+z)}$$,
but I'm not sure I understand how that comes about. I believe there are two factors of 1/(1+z) due to the photon energy and time dilation, but I'm not sure what other factors to take into account, such that it reduces to only one factor of (1+z) in the denominator.
Furthermore, it seems strange to me that in the example I give, a 10 Jy source at z=0.3 is only dimmed to a flux density of 4.3 Jy at z=2. Doesn't this suggest that one could in principle see this source to very extreme redshifts (pending the sensitivity of the instrument, of course). Or have I made a mistake in the scaling?