- #1
fab13
- 312
- 6
- TL;DR Summary
- I try to get clarifications about the Poisson's noise with spherical harmonics of Legendre transformation
1) In a cosmology context, when I add a centered Poisson noise on ##a_{\ell m}## and I take the definition of a ##C_{\ell}## this way :
##C_{\ell}=\dfrac{1}{2\ell+1} \sum_{m=-\ell}^{+\ell} \left(a_{\ell m}+\bar{a}_{\ell m}^{p}\right)\left(a_{\ell m}+\bar{a}_{\ell m}^{p}\right)^* ##
Is Poisson noise a complex number or is it simply a real number ? knowing that variance of Poisson is equal in my case :
##\text{Var}(\bar{a}_{\ell m}^{p}) = \dfrac{1}{n_{gal}\,f_{sky}}## where ##n_{gal}## the density of galaxies and ##f_{sky}## the fraction of sky observed.
I work with fluctuations of matter density (not temperature fluctuations).
2) What is the variance of real part and imaginary part of an ##a_{\ell m}## : usually, one says that :
##\text{Var}(a_{\ell m}) = C_{\ell}## but given the fact that ##a_{\ell m}## is a complex number, we could say that :
##\text{Var}(\text{Re}(a_{\ell m}))## has a variance equal to ##\dfrac{C_\ell}{2}##
and
##\text{Var}(\text{Im}(a_{\ell m}))## has a variance equal to ##\dfrac{C_\ell}{2}##
since :
##\begin{aligned}
& \left|a_{\ell m}\right|^2=\operatorname{Re}\left(a_{\ell m}\right)^2+\operatorname{Im}\left(a_{\ell m}\right)^2 \\
& E\left[\left|a_{\ell m}\right|^2\right]=E\left[\operatorname{Re}\left(a_{\ell m}\right)^2\right]+E\left[\operatorname{Im}\left(a_{\ell m}\right)^2\right]=C_{\ell}
\end{aligned}##
Is it correct ?
Any clarification is welcome.
##C_{\ell}=\dfrac{1}{2\ell+1} \sum_{m=-\ell}^{+\ell} \left(a_{\ell m}+\bar{a}_{\ell m}^{p}\right)\left(a_{\ell m}+\bar{a}_{\ell m}^{p}\right)^* ##
Is Poisson noise a complex number or is it simply a real number ? knowing that variance of Poisson is equal in my case :
##\text{Var}(\bar{a}_{\ell m}^{p}) = \dfrac{1}{n_{gal}\,f_{sky}}## where ##n_{gal}## the density of galaxies and ##f_{sky}## the fraction of sky observed.
I work with fluctuations of matter density (not temperature fluctuations).
2) What is the variance of real part and imaginary part of an ##a_{\ell m}## : usually, one says that :
##\text{Var}(a_{\ell m}) = C_{\ell}## but given the fact that ##a_{\ell m}## is a complex number, we could say that :
##\text{Var}(\text{Re}(a_{\ell m}))## has a variance equal to ##\dfrac{C_\ell}{2}##
and
##\text{Var}(\text{Im}(a_{\ell m}))## has a variance equal to ##\dfrac{C_\ell}{2}##
since :
##\begin{aligned}
& \left|a_{\ell m}\right|^2=\operatorname{Re}\left(a_{\ell m}\right)^2+\operatorname{Im}\left(a_{\ell m}\right)^2 \\
& E\left[\left|a_{\ell m}\right|^2\right]=E\left[\operatorname{Re}\left(a_{\ell m}\right)^2\right]+E\left[\operatorname{Im}\left(a_{\ell m}\right)^2\right]=C_{\ell}
\end{aligned}##
Is it correct ?
Any clarification is welcome.