- #1
laurabon
- 16
- 0
Hi everyone in the following expression
##f(t)=\frac{1}{2 \pi} \int\left(\int f(u) e^{-i \omega u} d u\right) e^{i \omega t} d \omega ##
the book says I can't swap integrals bacause the function
##f(u) e^{i \omega(t-u)}## is not ## L^1(\mathbb{R} \times \mathbb{R})##
why ? complex exponential is not always bounded?
##f(t)=\frac{1}{2 \pi} \int\left(\int f(u) e^{-i \omega u} d u\right) e^{i \omega t} d \omega ##
the book says I can't swap integrals bacause the function
##f(u) e^{i \omega(t-u)}## is not ## L^1(\mathbb{R} \times \mathbb{R})##
why ? complex exponential is not always bounded?