- #1
laurabon
- 16
- 0
the first method is this : I think I can create a surjective function f:[0,1]^n→S^n in this way : [0,1]^n is omeomorphic to D^n and D^n/S^1 is omeomorphic to S^n
so finding a surjective map f is equal to finding a surjective map f':D^n →D^n/S^n and that is quotient map.
Now if I take now a continuous surjective function [0,1]→[0,1]^n e.g Peano curve and I compose the continuous surjective function [0,1]^n→S^n above I should have the proof .
the second one I founnd on internet is this A non-empty Haussdorff topological space is a continuous image of the unit interval if and only if it is a compact, connected,locally connected andsecond countabke space , S^n has all this properties so there exist a continuous and surjective function from [0,1]^n→S^n
Are the 2 proofs correct?
so finding a surjective map f is equal to finding a surjective map f':D^n →D^n/S^n and that is quotient map.
Now if I take now a continuous surjective function [0,1]→[0,1]^n e.g Peano curve and I compose the continuous surjective function [0,1]^n→S^n above I should have the proof .
the second one I founnd on internet is this A non-empty Haussdorff topological space is a continuous image of the unit interval if and only if it is a compact, connected,locally connected andsecond countabke space , S^n has all this properties so there exist a continuous and surjective function from [0,1]^n→S^n
Are the 2 proofs correct?