- #1
Peter_Newman
- 155
- 11
Let ##\Lambda## be a lattice and ##a, b \in \mathbb{R}^n##, then
$$a \equiv b \text{ mod } \Lambda \Leftrightarrow a- b \in \Lambda$$
I want to prove the statement.
For the left to right direction I would say, ##a \equiv b \text{ mod } \Lambda \Leftarrow a = b +k\Lambda##, where ##k \in \mathbb{Z}^n## and therefore ##a - b = k\Lambda##, but how does one follow from this, that ##a - b \in \Lambda##?
For the other direction ##a - b \in \Lambda##, say ##u \in \Lambda##, then ##a - b = u## that is ##a = b + u## and this is relative close to the other expression above, but how can we introduce the mod operation here?
$$a \equiv b \text{ mod } \Lambda \Leftrightarrow a- b \in \Lambda$$
I want to prove the statement.
For the left to right direction I would say, ##a \equiv b \text{ mod } \Lambda \Leftarrow a = b +k\Lambda##, where ##k \in \mathbb{Z}^n## and therefore ##a - b = k\Lambda##, but how does one follow from this, that ##a - b \in \Lambda##?
For the other direction ##a - b \in \Lambda##, say ##u \in \Lambda##, then ##a - b = u## that is ##a = b + u## and this is relative close to the other expression above, but how can we introduce the mod operation here?