- #1
HDB1
- 77
- 7
Please, I have a question about automorphism:
Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.
Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance,
Let ##\mathbb{K}## be a field, if ##\operatorname{char}(\mathbb{K})=p ##, then the order of automorphism ##\phi## is ##p##, i.e. ##\phi^p=\operatorname{id}##, where ##i d## is identity map.
Is that right? please, if yes, how we can prove it, and what will happen if ##\operatorname{char}(\mathbb{K})=0 ##Thanks in advance,
