- #1
HDB1
- 77
- 7
Please, I have a question about Schur's Lemma ;
Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.
Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance,
Let $\phi: L \rightarrow g I((V)$ be irreducible. Then the only endomorphisms of $V$ commuting with all $\phi(x)(x \in L)$ are the scalars.
Could you explain it, and please, how we can apply this lemma on lie algebra ##L=\mathfrak{s l}(2)##thanks in advance,