- #1
guv
- 123
- 22
- TL;DR Summary
- how is the tensor transformation rule applied on a position vector? $$v^\alpha = v^{*\beta} \frac{\partial u^\alpha}{\partial u^{* \beta}}$$
Suppose I have a Cartesian Coordinate system (x,y) and a polar coordinate system (##r, \theta##). The position vector (3,4) and (5, ##\arctan \frac{4}{3}##) are the same except the representation. The position vector is a tensor, how does the position vector follow the tensor transformation rule? Surely I cannot write ##x = r \frac{\partial x}{\partial r} + \theta \frac{\partial x}{\partial \theta}##
It's clear for a function ##f(x(r, \theta),y(r, \theta))##, its derivative ##\frac{\partial f}{\partial r}## which is the gradient vector follows the transformation rule.
Does the transformation rule apply to a position vector?
It's clear for a function ##f(x(r, \theta),y(r, \theta))##, its derivative ##\frac{\partial f}{\partial r}## which is the gradient vector follows the transformation rule.
Does the transformation rule apply to a position vector?