- #1
Trollfaz
- 135
- 14
In 3 d spherical coordinates we know that
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r^2}=4π\delta^3(\textbf{r})$$
Integration over all## R^3## is 4π
So when we remove the third dimensions and enter 2d polar coordinates then
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r}=2π\delta^2(\textbf{r})$$
So the integral over ##R^2## is 2π?
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r^2}=4π\delta^3(\textbf{r})$$
Integration over all## R^3## is 4π
So when we remove the third dimensions and enter 2d polar coordinates then
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r}=2π\delta^2(\textbf{r})$$
So the integral over ##R^2## is 2π?