- #1
Trollfaz
- 135
- 14
Suppose I have a cylindrical shell of radius r, height h. I can easily express the surface as
$$(r cos(\theta)) i + (r sin(\theta)) j + t k$$
$$0<\theta<2π , 0<t<h$$
For a conical surface of base rad ρ and height h,
$$z=kr -> z=k, r=ρ$$
$$k=\frac{h}{ρ}$$
Then the surface is
$$ \frac {tρcos(\theta)}{h} i + \frac {tρsin(\theta)}{h} j + t k$$
$$0<\theta<2π , 0<t<h$$
But how do I parametrize the surfaces in ## s θ z## usual cylindrical unit vectors
$$(r cos(\theta)) i + (r sin(\theta)) j + t k$$
$$0<\theta<2π , 0<t<h$$
For a conical surface of base rad ρ and height h,
$$z=kr -> z=k, r=ρ$$
$$k=\frac{h}{ρ}$$
Then the surface is
$$ \frac {tρcos(\theta)}{h} i + \frac {tρsin(\theta)}{h} j + t k$$
$$0<\theta<2π , 0<t<h$$
But how do I parametrize the surfaces in ## s θ z## usual cylindrical unit vectors