- #1
GR191511
- 76
- 6
- TL;DR Summary
- about metric
##df=\frac {\partial f}{\partial r} dr+\frac {\partial f}{\partial \theta}d\theta\quad
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
\nabla f=\frac{\partial f}{\partial r}\vec{e_r} +\frac{1}{r}\frac{\partial f}{\partial \theta }\vec{e_\theta }##
On the other hand ## g_{rr}=1\:g_{r\theta}=0\:g_{\theta r}=0\;g_{\theta\theta}=r^2\;##So According to##v_2=v^{\alpha} g_{\alpha 2}\;then\; (df)_{\theta}=\frac{\partial f}{\partial r}*0+\frac{1}{r}\frac{\partial f}{\partial \theta }*r^2=r\frac{\partial f}{\partial \theta }\neq\frac{\partial f}{\partial \theta }##Where have I gone wrong?
Last edited: