- #1
redtree
- 285
- 13
- TL;DR Summary
- I am trying to understand the relationship between Fourier conjugate bases in spherical coordinates
I am trying to understand the relationship between Fourier conjugates in the spherical basis. Thus for two functions ##f(\vec{x}_3)## and ##\hat{f}(\vec{k}_3)##, where
\begin{equation}
\begin{split}
\hat{f}(\vec{k}_3) &= \int_{\mathbb{R}^3} e^{-2 \pi i \vec{k}_3 \cdot \vec{x}_3} f(\vec{x}_3 d\vec{k}_3
\end{split}
\end{equation}
where ##\vec{x}_3 = [x_1,x_2,x_3]## and ##\vec{k}_3 = [k_1,k_2,k_3]##
In spherical 3-space coordinates,
\begin{equation}
\begin{split}
\hat{f}(\varrho, \xi_1, \xi_2) &= \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1/2} e^{-2 \pi i (\varrho r + \xi_1 \theta_2 + \xi_2 \theta_2)} f(r,\theta_1,\theta_2) dr d\theta_1 d\theta_2
\end{split}
\end{equation}
where ##\vec{x}_3 = [r,\theta_1,\theta_2]## and ##\vec{k}_3 = [\varrho,\xi_1,\xi_2]##
Thus, for a function ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)##, where in spherical coordinates ##\big(\vec{k}_3\big)^2 = \big( \varrho \big)^2##,
\begin{equation}
\begin{split}
\hat{f}\left( \big(\vec{k}_3\big)^2 \right) &= \hat{f}\left(\big( \varrho \big)^2 \right)
\\
&= \int_{0}^{\infty} e^{-2 \pi i \varrho r} f(r^2) dr
\end{split}
\end{equation}
such that ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)## is independent of ##\theta_1## and ##\theta_2##. Is that correct? Am I missing something?
\begin{equation}
\begin{split}
\hat{f}(\vec{k}_3) &= \int_{\mathbb{R}^3} e^{-2 \pi i \vec{k}_3 \cdot \vec{x}_3} f(\vec{x}_3 d\vec{k}_3
\end{split}
\end{equation}
where ##\vec{x}_3 = [x_1,x_2,x_3]## and ##\vec{k}_3 = [k_1,k_2,k_3]##
In spherical 3-space coordinates,
\begin{equation}
\begin{split}
\hat{f}(\varrho, \xi_1, \xi_2) &= \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1/2} e^{-2 \pi i (\varrho r + \xi_1 \theta_2 + \xi_2 \theta_2)} f(r,\theta_1,\theta_2) dr d\theta_1 d\theta_2
\end{split}
\end{equation}
where ##\vec{x}_3 = [r,\theta_1,\theta_2]## and ##\vec{k}_3 = [\varrho,\xi_1,\xi_2]##
Thus, for a function ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)##, where in spherical coordinates ##\big(\vec{k}_3\big)^2 = \big( \varrho \big)^2##,
\begin{equation}
\begin{split}
\hat{f}\left( \big(\vec{k}_3\big)^2 \right) &= \hat{f}\left(\big( \varrho \big)^2 \right)
\\
&= \int_{0}^{\infty} e^{-2 \pi i \varrho r} f(r^2) dr
\end{split}
\end{equation}
such that ##\hat{f}\left( \big(\vec{k}_3\big)^2 \right)## is independent of ##\theta_1## and ##\theta_2##. Is that correct? Am I missing something?