- #1
fog37
- 1,549
- 107
- TL;DR Summary
- Regression line with zero slope and average as best prediction
Hello,
I was considering some made up data ##(X,Y)## and a its best fit regression line. The outcome variable ##Y## is the number of likes and ##X## is the number of comments on a website.
We have 100 data points which spread in such a way that the best fit line has zero slope. This implies that there is no linear relationship between the variables ##X## and ##Y##. This also means that the average of ##Y## would be the best prediction for ##Y## regardless of the value of ##X##. It does not matter what the value of ##X## is, the best prediction for ##Y## would be equal to the average and have a constant value....
My question: here we are talking about taking the arithmetic average of ALL the ##Y## values from all different ##X## values, correct?
What about the average of the ##Y## values for the same ##X## value (assuming there is more than just one ##Y## value for each ##X## value)? These two averages should always be numerically close, correct?
Thank you!
I was considering some made up data ##(X,Y)## and a its best fit regression line. The outcome variable ##Y## is the number of likes and ##X## is the number of comments on a website.
We have 100 data points which spread in such a way that the best fit line has zero slope. This implies that there is no linear relationship between the variables ##X## and ##Y##. This also means that the average of ##Y## would be the best prediction for ##Y## regardless of the value of ##X##. It does not matter what the value of ##X## is, the best prediction for ##Y## would be equal to the average and have a constant value....
My question: here we are talking about taking the arithmetic average of ALL the ##Y## values from all different ##X## values, correct?
What about the average of the ##Y## values for the same ##X## value (assuming there is more than just one ##Y## value for each ##X## value)? These two averages should always be numerically close, correct?
Thank you!