- #1
Hall
- 351
- 87
If I have been given a system of inhomogeneous linear ODEs,
$$
\vec{x'} =
\begin{bmatrix}
4 & -1 \\
5 & -2 \\
\end{bmatrix}
\vec{x}
+
\begin{bmatrix}
18e^{2t} \\
30e^{2t}\\
\end{bmatrix}
$$
I have found its particular solution to be:
$$
1/4
\begin{bmatrix}
-31e^{2t} - 25e^{6t} \\
85e^{2t} - 25e^{6t} \\
\end{bmatrix}
$$
But this answer doesn't match with the answer given in the book. Can someone tell me how to check if this solutions works by writing some code in Mathematica? I know, I can use DSolve for solving them, but I'm asking a reverse of that.
Please guide me step by step, I'm new to Mathematica and I don't have any background in programming.
$$
\vec{x'} =
\begin{bmatrix}
4 & -1 \\
5 & -2 \\
\end{bmatrix}
\vec{x}
+
\begin{bmatrix}
18e^{2t} \\
30e^{2t}\\
\end{bmatrix}
$$
I have found its particular solution to be:
$$
1/4
\begin{bmatrix}
-31e^{2t} - 25e^{6t} \\
85e^{2t} - 25e^{6t} \\
\end{bmatrix}
$$
But this answer doesn't match with the answer given in the book. Can someone tell me how to check if this solutions works by writing some code in Mathematica? I know, I can use DSolve for solving them, but I'm asking a reverse of that.
Please guide me step by step, I'm new to Mathematica and I don't have any background in programming.
Last edited: