Need editor for dvi files to convert latex

In summary, the conversation was about the importance of being a good listener and actively engaging in conversations. The speakers discussed how effective communication involves not only speaking, but also listening and understanding the other person's perspective. They also talked about the benefits of being a good listener, such as building stronger relationships and avoiding misunderstandings. Overall, the conversation emphasized the importance of active listening in effective communication.
  • #1
benorin
Homework Helper
Insights Author
1,435
186
I have only my iPhone rn to manipulate files with rn. I need assitence from someone with a latex editor capable of viewing .dvi files to download this linked file (the latest draft of our insight) on my google drive:

https://drive.google.com/file/d/10VDjcM1-ayqANjr-ZG5dnrAjUS_Hoyng/view?usp=drivesdk
(The permissions are all with link has editor perms). Please don’t delete it.

And then view it in your editor (there was an error RE: hyperref something or other when I exported from OpenLeaf to the above linked LaTeX .dvi file, a potential snag, either for you or me I’m not sure I’m new to the use of latex editors) copy the latex code and reply here by pasting said latex code into code tags, or if it’ll compile with standard latex tags post that too please?

Thank you for your kind assistance,
-Ben
 
Physics news on Phys.org
  • #2
When I am trying to open the file, I am getting an error with encoding. TexMaker says that the file cannot be decoded with UTF-8.
 
  • #3
Wrichik Basu said:
When I am trying to open the file, I am getting an error with encoding. TexMaker says that the file cannot be decoded with UTF-8.
I do not well understand such things, but I will re-upload the original .dvi file and this time not abuse it lol. Gimme sec.
 
  • #4
Link to https://drive.google.com/file/d/1eji7zggEXCtn90WV-772pj0PFc5yHyRz/view?usp=drivesdk
 
  • #5
benorin said:
Link to https://drive.google.com/file/d/1eji7zggEXCtn90WV-772pj0PFc5yHyRz/view?usp=drivesdk
Same issue, unfortunately. Some screenshots:

1660834435518.png
1660834479384.png
 
  • #6
Here’s a link to the .zip file containing the full overleaf project files. Overleaf has a free online editor that uses this, tho I think I might be able to fix it with settings within the editor myself before exporting.

What setting should this be?

674023AC-E9AC-4524-8C93-5255E6FE46F7.png
 
  • #7
The zip file works. I could compile the fractional_integral.tex file using PdfLaTeX (x2) -> BibTeX (x2) -> PdfLaTeX (x2) and the pdf file compiled successfully.

All the files are given below:

fractional_integral.tex:
\documentclass[final]{zzz}
% \documentclass[fleqn,final]{zzz}
%\usepackage{graphics,epsfig,color}
\usepackage{mathrsfs}
%\usepackage{showkeys}   %% remove the symbol % to see the keys
\usepackage{color}
\usepackage{tikz}
\usepackage{array}
\usepackage{graphicx}
\usepackage{rotating}
%\usepackage[backref=true,backend=biber,natbib=true,hyperref=true]{biblatex}
\usepackage[pdftex]{hyperref}
%\usepackage{refcheck}
\usepackage{soul}

\DeclareMathAlphabet{\mathpzc}{OT1}{pzc}{m}{it}

\hypersetup{
   colorlinks = true,
   urlcolor = blue,
   linkcolor = red,
   citecolor = green
}%%=========COMMENT FUNCTIONS========%
%%%% roberto inserted
\definecolor{Mycolor2}{HTML}{e85d04}
\sethlcolor{black}
\newcommand\moro[1]{{\textcolor{blue}{#1}}} %% original notes
\newcommand\rcoro[1]{{\textcolor{Mycolor2}{\newline
\bf[RCS: {#1}]\newline}}} %% Rob comments
\newcommand\noro[1]{{\textcolor{red}{#1}}}
\newcommand\goro[1]{{\textcolor{gray!60!green}{#1}}} %% rob reviewed comments
\newcommand\poro[1]{{\textcolor{purple}{#1}}}
\newcommand\voro[1]{{\textcolor{violet}{#1}}}
\newcommand\doro[1]{{\textcolor{darkgray}{#1}}}
\newcommand\boro[1]{{\ftextcolor{black}{#1}}}
%%%% final roberto

%\topmargin -0.2cm
\topmargin -1.6cm

\newcommand{\hyp}[5]{\,\mbox{}_{#1}F_{#2}\!\left(
  \genfrac{}{}{0pt}{}{#3}{#4};#5\right)}

\newcommand{\KdF}[5]{
F_{{#1}}^{{#2}}\!\left(
  \genfrac{}{}{0pt}{}{{#4}}{{#3}};#5\right)}
%\newcommand{\qhyp}[5]{\,\mbox{}_{#1}\phi_{#2}\!\left(
%\genfrac{}{}{0pt}{}{#3}{#4}\Bigg|#5\right)}
\newcommand{\qhyp}[5]{\,\mbox{}_{#1}\phi_{#2}\!\left(
\genfrac{}{}{0pt}{}{#3}{#4};#5\right)}

\newcommand{\myref}[1]{(\ref{#1})}
\def\cprime{$'$}

%%\newtheorem{lemma}{Lemma}[section]
\newtheorem{thm}{Theorem}[section]
\newtheorem{cor}[thm]{Corollary}
\newtheorem{lem}[thm]{Lemma}
\newtheorem{rem}[thm]{Remark}
\newtheorem{defn}[thm]{Definition}
\newtheorem{prop}[thm]{Proposition}
\newtheorem{ex}[thm]{Example}
%\newtheorem{voorb}[lemma]{Example}
%\newtheorem{stat}[lemma]{{\hspace{-5pt}}}
%\newtheorem{example}[lemma]{Example}

%%=======SETS EQUATION NUMBERING (EQUATION#.SECTION#)=======%%
%\numberwithin{equation}{section}
%\numberwithin{thm}{section}
%\numberwithin{cor}{section}
%\numberwithin{rem}{section}
%\numberwithin{defn}{section}

\makeatletter
\def\eqnarray{\stepcounter{equation}\let\@currentlabel=\theequation
\global\@eqnswtrue
\tabskip\@centering\let\\=\@eqncr
$$\halign to \displaywidth\bgroup\hfil\global\@eqcnt\z@
  $\displaystyle\tabskip\z@{##}$&\global\@eqcnt\@ne
  \hfil$\displaystyle{{}##{}}$\hfil
  &\global\@eqcnt\tw@ $\displaystyle{##}$\hfil
  \tabskip\@centering&\llap{##}\tabskip\z@\cr}

\def\endeqnarray{\@@eqncr\egroup
      \global\advance\c@equation\m@ne$$\global\@ignoretrue}

\def\@yeqncr{\@ifnextchar [{\@xeqncr}{\@xeqncr[5pt]}}
\makeatother

\parskip=0pt

\newcommand{\dd}{{\mathrm d}}
\newcommand{\expe}{{\mathrm e}}

\newcommand{\f}{{\bf f}}
\newcommand{\ba}{{\hspace{-0.02cm}\boldsymbol \alpha}}
\newcommand{\bn}{{\bf n}}
\newcommand{\bm}{{\bf m}}

\newcommand{\bfx}{{\bf x}}
\newcommand{\bfxp}{{{\bf x}^\prime}}
\newcommand{\wbfx}{\widehat{\bf x}}
\newcommand{\wbfxp}{{\widehat{\bf x}^\prime}}
\newcommand{\N}{{\mathbb N}}
\newcommand{\Si}{{\mathbf S}}

%%=======SETS OF NUMBERS========%%
\newcommand{\Z}{\mathbb{Z}} %INTEGERS
\newcommand{\R}{\mathbb{R}} %REAL NUMBERS
\newcommand{\C}{\mathbb{C}} %COMPLEX NUMBERS
\newcommand{\CC}{\mathbb{C}} %COMPLEX NUMBERS
\newcommand{\No}{\mathbb{N}_0} %NATURAL NUMBERS, n = 0, 1, 2, ...

%%=======HYPERGEOMETRIC FUNCTIONS=======%%
\newcommand{\pFq}[5]{  {{}_{#1}F_{#2}}\left(\! \genfrac..{0pt}{}{#3}{#4};#5\!\right)}
\newcommand{\pPq}[6]{  {{}_{#1}\phi_{#2}}\left( \genfrac..{0pt}{}{#3}{#4};#5,#6\right)}
\newcommand{\qbinom}[3]{\biggl[\genfrac..{0pt}{}{#1}{#2} \biggr]_{#3} }
\newcommand{\kampeF}[9]{  {{}F^{#1}_{#2}}\left( \genfrac..{0pt}{}{#3: #4;#5}{#6: #7; #8};#9\right)}
\newcommand{\doubleH}[9]{  {{}H^{#1}_{#2}}\left( \genfrac..{0pt}{}{#3: #4: #5}{#6: #7: #8};#9\right)}
\newcommand{\topt}[2]{\left\{\substack{{#1}\\{#2}}\right\}}
\newcommand{\tops}[3]{\left\{\substack{{#1}\\{#2}\\{#3}}\right\}}
\newcommand{\topr}[4]{\left\{\substack{{#1}\\{#2}\\{#3}\\{#4}}\right\}}
\newcommand{\topq}[5]{\left\{\substack{{#1}\\{#2}\\{#3}\\{#4}\\{#5}}\right\}}
\newcommand{\topp}[6]{\left\{\substack{{#1}\\{#2}\\{#3}\\{#4}\\{#5}\\{#6}}\right\}}

\newcommand{\topss}[3]{\left\{\substack{{#1}\\[-0.12cm]{#2}\\{#3}}\right\}}

\begin{document}

\renewcommand{\PaperNumber}{***}

%\FirstPageHeading{}

\ShortArticleName{Fractional Integrals}

\ArticleName{Evaluation of a Class $n$-fold Integrals by Means of Fractional Integration}

% Names of the authors for the title of the paper
\Author{Ben Orin\,$^{\ast}\!\!\ $
%Roberto S.~Costas-Santos\,$^\S\!\!\ $,
%Mourad E.~H.~Ismail\,$^\ast\!\!\ $
%and Lisa Ritter\,$^\ast\!\!$
}

\AuthorNameForHeading{Ben Orin, %R.S.~Costas-Santos,
%M.~E.~H.~Ismail,
%L.~Ritter
}%\Address{$^\ast$~Applied and Computational Mathematics Division,
%National Institute of Standards and Technology,
%Gaithersburg, MD 20899-8910, USA
%Address of First Author, Country
%\URLaddressD{http://www.nist.gov/itl/math/msg/howard-s-cohl.cfm}
%} % Address of First Author
%\EmailD{howard.cohl@nist.gov}
%\URLaddressD{
%\href{http://www.nist.gov/itl/math/msg/howard-s-cohl.cfm}
%{http://www.nist.gov/itl/math/msg/howard-s-cohl.cfm}
%}
\EmailD{benorin@gmail.com} % E-mail address of First Author

%\Address{}
%Address of First Author, Country

%} % Address of First Author
%\EmailD{howard.cohl@nist.gov} % E-mail address of First Author

%\Address{$^\S$~Departamento de F\'isica y Matem\'{a}ticas,
%Universidad de Alcal\'{a},
%c.p. 28871, Alcal\'{a} de Henares, Spain
%Address of First Author, Country
%} % Address of First Author
%\URLaddressD{
%\href{http://www.rscosan.com}
%{http://www.rscosan.com}
%}
%\EmailD{rscosa@gmail.com} % E-mail address of 1st Author

%\Address{$^\ast$~Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
%Address of First Author, Country
%\URLaddressD{
%\href{https://sciences.ucf.edu/math/person/mourad-ismail/}
%{https://sciences.ucf.edu/math/person/mourad-ismail/}
%}
%} % Address of First Author
%\EmailD{mourad.eh.ismail@gmail.com} % E-mail address of First Author%\ArticleDates{Received ?? March 2018 in final form ?; Published online ?}
\ArticleDates{Received ?, in final form ?; Published online ?}

\Abstract{Abstract here.}
%``Symmetry, Integrability and Geometry: Methods and Applications''.}
%\Keywords{
%Generalized hypergeometric series;
%Generalized hypergeometric orthogonal polynomials;
%Linearization coefficient; Connection coefficients;
%Eigenfunction expansions}
%Please type here List of Keywords for your article separated by semicolon.
% Keywords required only for MST, PB, PMB, PM, JOA, JOB?
% Keywords:%\Classification{33C45, 05A15, 33C20, 34L10, 30E20}
%{?} % e.g. 35A30; 81Q05
%For 2010 Mathematics Subject Classification see
%http://www.ams.org/mathscinet/msc/msc2010.html

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In this note we will be evaluating a certain class of $n$-fold integrals over hypercubes via interpolation of the left Hadamard fractional integral operator. We won't be doing any fractional calculus other than a single interpolation theorem which may be used as a basis for fractional integration of the Hadamard type, note that this is not the more common Riemann nor Reiz types of fractional integral interpolation.

\section{Main Body}

\subsection{Fractional Calculus}
Fractional integrals are a generalization of $n$-fold iterated integrals to arbitrary order $\alpha\in\C$ (see theorem \ref{interpolation}), there at least a few ways to do that, each giving rise to its own fractional calculus.
\cite[p.~1]{Jarad}
\begin{defn}
The left Hadamard fractional integral operator will be denoted by $_aI_x^\alpha $, for $0 < a < x < \infty , \Re\left[ \alpha\right] > 0$ is defined as
\[
_a^HI_x^\alpha g\left( x \right) = \tfrac{1}{{\Gamma \left( \alpha  \right)}}\int_{a}^x {{{\log }^{\alpha  - 1}}\left( {\tfrac{x}{t}} \right) g\left( t \right)\tfrac{dt}{t}}
\]
\label{defn51}
\noindent assuming the integral is convergent and where $\log$ denotes the natural logarithm, $\Gamma$ is the usual gamma function, and $\Re$ is the real part.
\end{defn}
\cite[p.~2]{Jarad}
\begin{thm}
\label{interpolation}
Interpolation of this n-fold integral by the left Hadamard fractional integral operator.
\[
\int_a^x {\int_a^{{x_1}} { \cdots \int_a^{{x_{n - 1}}} {f\left( {{x_n}} \right)\tfrac{{d{x_n} \ldots d{x_1}}}{{{x_n} \cdots {x_1}}}} } }  = \,_a^HI_x^nf\left( x \right) = \tfrac{1}{{\left( {n - 1} \right)!}}\int_a^x {{{\log }^{n - 1}}\left( {\tfrac{x}{t}} \right)f\left( t \right)dt}
\]
\end{thm}

\begin{proof}
The proof is by induction on n:
(i) base case of $n = 1$ is obvious.
(ii) Let $P(n)$ be the statement of theorem \ref{interpolation}. Assume that $P(n)$ holds for some fixed positive integer $n$. Then,

\begin{eqnarray*}P(n+1) &=& \int_a^x \int_a^{x_1}  \cdots \int_a^{x_n} f\left( x_{n + 1} \right)\tfrac{d{x_{n + 1}} \ldots {d{x_1}}}{{x_{n + 1}} \cdots {x_1}} \\ &=& \int_a^x {\left[ {\int_a^{{x_1}} { \cdots \int_a^{{x_n}} {f\left( {{x_{n + 1}}} \right)\tfrac{{d{x_{n + 1}} \ldots d{x_2}}}{{{x_{n + 1}} \cdots {x_2}}}} } } \right]\tfrac{{d{x_1}}}{{{x_1}}}} \\  &=& \int_a^x {\left[ {\tfrac{1}{{\left( {n - 1} \right)!}}\int_a^{{x_1}} {{{\log }^{n - 1}}\left( {\tfrac{{{x_1}}}{t}} \right)f\left( t \right)\tfrac{{dt}}{t}} } \right]\tfrac{{d{x_1}}}{{{x_1}}}}  \\ &=& \tfrac{1}{{\left( {n - 1} \right)!}}\int_a^x {\int_t^x {{{\log }^{n - 1}}\left( {\tfrac{{{x_1}}}{t}} \right)f\left( t \right)\tfrac{{d{x_1}dt}}{{{x_1}t}}} }  \\ &=& \tfrac{1}{{\left( {n - 1} \right)!}}\sum\limits_{k = 0}^{n - 1} {{{\left( { - 1} \right)}^k}\left( {\begin{array}{*{20}{c}}{n - 1} \\ k \end{array}} \right)\int_a^x {\int_t^x {{{\log }^k}\left( {{x_1}} \right){{\log }^{n - k - 1}}\left( t \right) f\left( t \right)\tfrac{{d{x_1}dt}}{{{x_1}t}}} } }  \\ &=& \tfrac{1}{\left( {n - 1} \right) ! }\sum\limits_{k = 0}^{n - 1} \left( -1 \right)^k \left( {\begin{array}{*{20}{c}}{n - 1} \\ k \end{array}} \right)\int_a^x {{\log }^{n - k - 1}}\left( t \right) f\left( t \right)\tfrac{1}{t}\left[ \int_t^x {\log }^k\left( x_1 \right) \tfrac{d{x_1}}{x_1}\right] dt  \\ &=& \tfrac{1}{{\left( {n - 1} \right) !}}\sum\limits_{k = 0}^{n - 1} {{{\left( { - 1} \right) }^k}\left( {\begin{array}{*{20}{c}}{n - 1} \\ k \end{array}} \right) \tfrac{1}{{k + 1}}\int_a^x {{{\log }^{n - k - 1}}\left( t \right)f\left( t \right)\tfrac{1}{t}\left( {{{\log }^{k + 1}}x - {{\log }^{k + 1}}t} \right)dt} }  \\ &=& \tfrac{1}{{n!}}\sum\limits_{k = 0}^n {{\left(  - 1 \right) }^k}\left( {\begin{array}{*{20}{c}} n \\ k \end{array}} \right)\int_a^x {{{\log }^{n - k}}\left( t \right){{\log }^k}\left( x \right)f\left( t \right)\tfrac{{dt}}{t}} \\  &=& \tfrac{1}{{n!}}\int_a^x {{{\log }^n}\left( {\tfrac{x}{t}} \right) f\left( t \right)\tfrac{{dt}}{t}}  \\ \end{eqnarray*}

and the proof is complete.
\end{proof}
The following non-standard definition we will adopt throughout the rest of this note because it is easier to work with than the standard definition \ref{defn51} for our purposes.
\begin{defn}
\label{defn52}
The modified left Hadamard fractional operator
For $0 < a < x < \infty ,\Re \left[ \alpha  \right] > 0$
\[
_a^{eH}I_x^\alpha g\left( x \right) = \tfrac{1}{\Gamma \left( \alpha  \right)}\int_{0}^{\log \left( \tfrac{x}{a} \right) } u^{\alpha -1} g\left( x e^{-u}\right)\, du
\]
where we have substituted $u = \log \left( \tfrac{x}{t} \right)$ in the integral of definition \ref{defn51} and $u^{\alpha -1}$ is taken as it’s principle value.
\end{defn}

\subsection{Evaluations of $n$-fold integrals}

Here we reduce the problem of evaluating certain $n$-fold integrals to that of solving a single fractional integral (just think of these as integrals transforms for our purposes).

\begin{thm}
\label{AC}
Analytic continuation of certain $n$-fold integrals over unit hypercubes.
Let $z$ and $\alpha$ be a complex-valued parameters, let $t$ denote a real variable, let $n$ be a positive integer, and for fixed $z=z_0$ let $f(z_0,t)$ be a continuous function of $t$ on $\left[ 0, 1 \right]$. Then for suitable functions $f(z, t)$ (for which the integral converges) define
\[
F_n(z):= \int_0^1\int_0^1\cdots \int_0^1 f\left( z,\prod\limits_{k=1}^n\lambda _k \right)\, d\lambda
\]
where $d\lambda := d\lambda _{n}\ldots d\lambda _1$ (and likewise for other dummy variables as well). Then
\[
G(z, \alpha ) := \tfrac{1}{\Gamma (\alpha )}\int_0^\infty {u^{\alpha -1}e^{-u} f(z,e^{-u})\, d{u}}\text{ and } G(z,n)=F_n(z)
\]
is the Hadamard fractional integral of order $\alpha$ which is the analytic continuation of $F_n(z)$ from integer $n$ to complex-valued $\alpha$ restricted to values for which the integral converges.
\end{thm}
\begin{proof}
\cite{PhysicsForums}
We will use the change of variables ${y_k} = \prod\limits_{i = 1}^k {\lambda _i} ,k = 1,2, \ldots ,n$ on the integral $F_n(z)$ to formulate an integral that represents the function for complex values of the argument via theorem \ref{interpolation} .
Note that the for given change of variables we have ${\lambda _1} = {y_1},{\lambda _k} = \tfrac{y_k}{y_{k - 1}},k = 2,3, \ldots ,n$, hence
\[
\tfrac{{\partial {\lambda _i}}}{{\partial {y_j}}} = \left\{ {\begin{array}{*{20}{c}}{1,}&{i = j = 1} \\ {\tfrac{1}{{{y_{i - 1}}}},}&{i = j \ne 1} \\ { - \tfrac{{{y_i}}}{{y_{i - 1}^2}},}&{i = j - 1} \\ {0,}&{{\text{otherwise}}} \end{array}} \right.
\]
hence the Jacobian determinant is the product along the diagonal, $\left| {\tfrac{{\partial \left( {{\lambda _1}, \ldots ,{\lambda _n}} \right)}}{{\partial \left( {{y_1}, \ldots ,{y_n}} \right)}}} \right| = \tfrac{{d{y_n} \ldots d{y_1}}}{{{y_{n - 1}} \cdots {y_1}}}$.

\noindent Notice that this change of variables maps the unit hypercube ${\left[ {0,1} \right]^n}$ to the simplex
\[
\left\{ \vec y \in {\mathbb{R}^n}|0 \leq {y_1} \leq 1,0 \leq {y_i} \leq {y_{i - 1}},\text{ for } i = 2,3, \ldots ,n \right\} .
\]
We replace the upper bound of ${y_1}$ with $x$ so that

\begin{eqnarray*} F_n(z) &=& \lim\limits_{a \to 0^{+}}\lim\limits_{x \to 1^{-}}\int_a^x \int_a^{y_1} \cdots \int_a^{y_{n-1}} y_n f(z, y_n)\, \tfrac{d{y_n} \ldots d{y_1}}{{y_n} \ldots {y_1}} \\  &=& \lim\limits_{a \to 0^{+}}\lim\limits_{x \to 1^{-}} \, _a^{eH}I_x^n\left( x f(z, x) \right) \\ &=& \tfrac{1}{\left( n - 1 \right) !}\int_0^\infty  u^{n-1}e^{-t} f\left( z, e^{-t}\right) \\ \end{eqnarray*}

by theorem \ref{interpolation} which we analytically continue to

\begin{eqnarray*}G(z, \alpha ) = \lim\limits_{a \to 0^{+}}\lim\limits_{x \to 1^{-}} \,_a^{eH}I_x^\alpha \left[ xf(z,x) \right] &=& \tfrac{1}{\Gamma (\alpha )}\int_0^\infty {u^{\alpha -1}e^{-u} f(z,e^{-u})\, du} \\ \end{eqnarray*}
\end{proof}
The next few computer and table-assisted examples will illustrate the use of theorem \ref{AC}.
\begin{ex}
\label{ex1}
\cite[p.~193]{BorosMoll}
Let $G( z, \alpha ) =\tfrac{1}{\Gamma (\alpha )} \int_0^\infty t^{\alpha -1} e^{-t}\cdot\tfrac{e^t}{(1+t)^z}dt$. We see that this is a beta integral upon canceling $e^{-t}e^t=1$ giving the value $G( z, \alpha ) = \tfrac{\Gamma (z- \alpha )}{\Gamma (z)}$. We then determine what $f(z, t)$ is by comparing the integrand of the integral defining $G(z, \alpha )$ in this example to the corresponding integrand in theorem \ref{AC}, to see that $f(z, e^{-t}) = \tfrac{e^t}{(1+t)^z}$ which implies that $f(z, t) = \tfrac{t^{-1}}{(1-\log (t))^z}$ and hence the evaluation of the $n$-fold integral of theorem \ref{AC} is
\[
F_n (z) = \int_0^1\int_0^1\cdots\int_0^1 \left( \prod\limits_{k=1}^n \lambda _k\right) ^{-1} \left( 1- \log  \prod\limits_{k=1}^n \lambda _k \right) ^{-z}\, d\lambda = \tfrac{\Gamma (z-n)}{\Gamma (z)} =G(z, n).
\]
Note that other integrals may be deduced from this by differentiation under the integral sign w.r.t. $z$, such as
\[
F^{\prime }_n (z) = \int_0^1\int_0^1\cdots\int_0^1 \tfrac{-\log\left( 1-\log\prod\limits_{j=1}^n \lambda _j \right) }{\left( \prod\limits_{m=1}^n \lambda _m\right) \left( 1- \log  \prod\limits_{k=1}^n \lambda _k \right) ^z} \, d\lambda = \tfrac{\Gamma (z-n)\left( \psi ^{(0)}(z-n)-\psi ^{(0)}(z) \right)}{\Gamma (z)}
\]
where $\psi ^{(m)}$ is the $m^{th}$ derivative of the diagamma function.
\end{ex}

\begin{ex}
\cite{FunctionsWolfram}
\label{ex2}
Let $G(z, \alpha , y) = \tfrac{1}{\Gamma ( \alpha )}\int_0^\infty t^{\alpha -1}e^{-t}\cdot\tfrac{e^{-(y-1)t}}{1-z e^{-t}}dt$. Wolfram.functions.com gives the value $G(z, \alpha ,y) = \sum\limits_{k= 0}^\infty \frac{z^k}{(k+y) ^\alpha } = \Phi ( z,\alpha ,y)$ where $\Phi$ is the Lerch Transcendent. We see that $f(z,t,y)= \tfrac{t^{y-1}}{1-zt}$ and hence the evaluation we seek is
\[
F_n (z,y) = \int_0^1 \int_0^1  \cdots \int_0^1 \left( 1 - z\prod\limits_{k = 1}^n \lambda _k  \right) ^{-1}\prod\limits_{j = 1}^n \lambda _j^{y-1} \, d{\lambda} =\sum\limits_{k = 0}^\infty \frac{z^k}{(k+y)^n} = \Phi (z,n,y).
\]
More integrals maybe calculated by differentiation under the integral sign w.r.t. $y$,

\begin{eqnarray*}\tfrac{\partial F_n}{\partial y} (z,y) &=& \int_0^1 \int_0^1  \cdots \int_0^1 \left( 1 - z\prod\limits_{k = 1}^n \lambda _k  \right) ^{-1}\prod\limits_{j = 1}^n \lambda _j^{y-1}\cdot \log\prod\limits_{\ell = 1}^n\lambda _\ell d{\lambda} \\ &=& -n\sum\limits_{k = 0}^\infty \frac{z^k}{(k+y)^{n+1}} = -n\Phi (z,n+1,y) \\ \end{eqnarray*}

Differentiating $m$ times w.r.t. $y$, we get

\begin{eqnarray*} \tfrac{\partial ^m F_n}{\partial y^m} (z,y) &=& \int_0^1 \int_0^1  \cdots \int_0^1 \left( 1 - z\prod\limits_{k = 1}^n \lambda _k  \right) ^{-1}\prod\limits_{j=1}^n\lambda _j^{y-1}\cdot \log^{m}\prod\limits_{\ell = 1}^n\lambda _\ell  d{\lambda} \\ &=& (-1)^{m}\tfrac{(n+m-1)!}{(n-1)!}\sum\limits_{k = 0}^\infty \frac{z^k}{(k+y)^{n+m}} = (-1)^{m}\tfrac{(n+m-1)!}{(n-1)!}\Phi (z,n+m,y) \\ \end{eqnarray*}
\end{ex}

%\begin{defn}
%\label{MellinT}
%The Mellin transform. For $s\in\mathbb{C},$
%\[
%\mathfrak{M}\left[ g(t)\right] = \int_0^\infty t^{s-1}g(t)dt.
%\]
%\end{defn}

\subsection*{Acknowledgements}
What does a man have that God has not given him? Nothing.

\noindent Thanks to Howard Cohl for helping me.

\bibliographystyle{plain}
\bibliography{refbiborin}

\end{document}

zzz.cls:
% Document class file for on-line journal JOURNAL
% ``Journal''
% Document history:
%    Version 1.5: 2010-01-05 Vyacheslav Boyko & Roman Popovych
% Known problems:
%     None

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{zzz}[2009/01/05
v1.4 Document class for ``Journal'']
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions
\LoadClass[fleqn,11pt,twoside]{article}
\PassOptionsToPackage{fleqn}{amsmath}
\RequirePackage{amsthm}
\RequirePackage{amsmath}
\RequirePackage{latexsym}
\RequirePackage{amssymb}
\RequirePackage{amscd}
\RequirePackage{epsfig}
\RequirePackage{graphics}
\RequirePackage{ifthen}

% Beginning initialization

\newcommand{\ArticleLabel}{Article label}
\newcommand{\evenhead}{Author \ name}
\newcommand{\oddhead}{Article \ name}
\newcommand{\theArticleName}{Article name}
\newcommand{\Volume}{{\bf *}}
\newcommand{\Paper}{Paper}
\newcommand{\PaperNumber}{1}
\newcommand{\PublicationYear}{202*}

% Titlepage

\newcommand{\FirstPageHeading}[1]{\thispagestyle{empty}%
\noindent\raisebox{24pt}[0pt][0pt]{\makebox[\textwidth]{\protect\footnotesize \sf
Journal
\hfill  JOURNAL \Volume \ (\PublicationYear), \PaperNumber,
\pageref{\ArticleLabel-lp} pages}}\par}

\newcommand{\LastPageEnding}{\label{\ArticleLabel-lp}\newpage}

\newcommand{\ArticleName}[1]{\renewcommand{\theArticleName}{#1}\vspace{-7mm}\par\noindent {\LARGE\bf  #1\par}}
\newcommand{\Author}[1]{\vspace{5mm}\par\noindent {\it #1} \par\vspace{2mm}\par}
\newcommand{\Address}[1]{\vspace{2mm}\par\noindent {\it #1} \par}
\newcommand{\Email}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {\rm E-mail: }{\it  #1} \par}}
\newcommand{\EmailMarked}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent $^*$~{\rm E-mail: }{\it  #1} \par}}
\newcommand{\URLaddress}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {\rm URL: }{\tt  #1} \par}}
\newcommand{\URLaddressMarked}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent $^*$~{\rm URL: }{\tt  #1} \par}}
\newcommand{\EmailD}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {$\phantom{\dag}$~\rm E-mail: }{\it  #1} \par}}
\newcommand{\EmailDD}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {$\phantom{{}^{\dag^1}}$~\rm E-mail: }{\it  #1} \par}}
\newcommand{\URLaddressD}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {$\phantom{\dag}$~\rm URL: }{\tt  #1} \par}}
\newcommand{\URLaddressDD}[1]{\ifthenelse{\equal{#1}{}}{}{\par\noindent {$\phantom{\dag^1}$~\rm URL: }{\tt  #1} \par}}
\newcommand{\ArticleDates}[1]{\vspace{2mm}\par\noindent {\small {\rm #1} \par
\noindent
{\tt doi:10.3842/JOURNAL.\PublicationYear.\PaperNumber}} \par}
\newcommand{\Abstract}[1]{\vspace{6mm}\par\noindent\hspace*{10mm}
\parbox{140mm}{\small {\bf Abstract.} #1}\par}

\newcommand{\Keywords}[1]{\vspace{3mm}\par\noindent\hspace*{10mm}
\parbox{140mm}{\small {\it Key words:} \rm #1}\par}
\newcommand{\Classification}[1]{\vspace{3mm}\par\noindent\hspace*{10mm}
\parbox{140mm}{\small {\it 2010 Mathematics Subject Classification:} \rm #1}\vspace{3mm}\par}

\newcommand{\ShortArticleName}[1]{\renewcommand{\oddhead}{#1}}
\newcommand{\AuthorNameForHeading}[1]{\renewcommand{\evenhead}{#1}}

% Set head and foot

\renewcommand{\@evenhead}{
\hspace*{-3pt}\raisebox{-15pt}[\headheight][0pt]{\vbox{\hbox to \textwidth
{\thepage \hfil \evenhead}\vskip4pt \hrule}}}
\renewcommand{\@oddhead}{
\hspace*{-3pt}\raisebox{-15pt}[\headheight][0pt]{\vbox{\hbox to \textwidth
{\oddhead \hfil \thepage}\vskip4pt\hrule}}}
\renewcommand{\@evenfoot}{}
\renewcommand{\@oddfoot}{}% Papersize

\setlength{\textwidth}{160.0mm}
\setlength{\textheight}{240.0mm}
\setlength{\oddsidemargin}{0mm}
\setlength{\evensidemargin}{0mm}
\setlength{\topmargin}{-8mm}
\setlength{\parindent}{5.0mm}

% This makes the Figure/Table text a little smaller and makes the
% number boldface.

\long\def\@makecaption#1#2{%
  \vskip\abovecaptionskip
  \sbox\@tempboxa{\small \textbf{#1.}\ \ #2}%
  \ifdim \wd\@tempboxa >\hsize
    {\small \textbf{#1.}\ \ #2}\par
  \else
    \global \@minipagefalse
    \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
  \fi
  \vskip\belowcaptionskip}% Defines the \numberwithin command from AMS-LaTeX
%
\def\numberwithin#1#2{\@ifundefined{c@#1}{\@nocounterr{#1}}{%
  \@ifundefined{c@#2}{\@nocnterr{#2}}{%
  \@addtoreset{#1}{#2}%
  \toks@\@xp\@xp\@xp{\csname the#1\endcsname}%
  \@xp\xdef\csname the#1\endcsname
    {\@xp\@nx\csname the#2\endcsname
     .\the\toks@}}}}

% Proof should be boldface
%
\renewenvironment{proof}[1][\proofname]{\par
  \normalfont
  \topsep6\p@\@plus6\p@ \trivlist
  \item[\hskip\labelsep\textbf{%
    #1}\@addpunct{\bf .}]\ignorespaces
}{%
  \qed\endtrivlist
}
\renewcommand{\qedsymbol}{$\blacksquare$}% Theorem-like environment
%
\newtheorem{theorem}{Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{proposition}{Proposition}
{\theoremstyle{definition} \newtheorem{definition}{Definition}
\newtheorem{example}{Example}
\newtheorem{remark}{Remark}
\newtheorem{note}{Note}
}    

\endinput

refbiborin.bib:
@MISC{PhysicsForums,
     title = {{www.PhysicsForums.com}},
    author = {{FactChecker}},
howpublished = {\newline\url{https://www.physicsforums.com/threads/i-need-a-mapping-from-the-unit-hypercube-0-1-n-to-a-given-simplex.985017/#post-6305550}}
}
@article{Jarad,
    AUTHOR = {Jarad F.~Abdeljawad T.~Baleanu, D.},
     TITLE = {Caputo-type modification of the Hadamard
fractional derivatives},
   JOURNAL = {Advances in Difference Equations},
    VOLUME = {2012},
    NUMBER = {142},
      YEAR = {2012},
     PAGES = {142-150},
    URL = {\newline\url{https://advancesindifferenceequations.springeropen.com/track/pdf/10.1186/1687-1847-2012-142.pdf}}
}
@book{BorosMoll,
    AUTHOR = {Boros, G.~ Moll, V.},
     TITLE = {Irresistible Integrals},
 PUBLISHER = {Cambridge University Press, New York},
      YEAR = {2004},
     PAGES = {xvi+306},
}
@MISC{FunctionsWolfram,
     title = {{Functions.Wolfram.com}},
    author = {{Wolfram, S.}},
howpublished = {\newline\url{https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/LerchPhi/07/01/01/01/0001/}}
}
 
  • Like
Likes benorin
  • #8
Ok, I think I fixed it, no compile errors this time. Link. Note all the previously linked files have been deleted.
 
  • #9
benorin said:
Ok, I think I fixed it, no compile errors this time. Link. Note all the previously linked files have been deleted.
The .dvi file still doesn't open (same error). But I have given the code of the .tex files above.

The PDF file is attached.
 

Attachments

  • fractional_integral.pdf
    245.3 KB · Views: 115
  • #10
Would you mind doing the thing with the .dvi in the post #8 please? Having just a single file will greatly aid me as I am a novice with that Wordpress editor, I haven’t a clue how to integrate 3 files into one insight.

Thanks
 
  • #11
Wrichik Basu said:
The .dvi file still doesn't open (same error). But I have given the code of the .tex files above.

The PDF file is attached.
Which post was the file you tried here? There were 3 or 4 links posted to a file with the same name shared after the previous iteration’s file was deleted.
 
  • #12
benorin said:
Which post was the file you tried here? There were 3 or 4 links posted to a file with the same name shared after the previous iteration’s file was deleted.
The link you posted in post #8. It's the same encoding error.
 
  • #13
I can Compile a pdf from overleaf just fine, what I need is Latex source code that I can reformat for the Wordpress editor we use for writing insights.
 
  • #14
Thank you for you vigilant help. I will try a different setting.
 
  • Like
Likes Wrichik Basu
  • #15
benorin said:
what I need is Latex source code that I can reformat for the Wordpress editor we use for writing insights.
Maybe @Greg Bernhardt will be able to help in this situation.

When I write Insight articles, I directly write them in Wordpress. I don't know how .tex files can be converted to Wordpress.
 
  • Like
Likes benorin
  • #16
I copy+paste them into Word and do find+replace all for the two types of latex tags to Wordpress tags and copy+paste that into Wordpress and then begins the reformatting nightmare lol.
 
  • #17
@benorin can you recreate the PDF in Insights? If not, I can copy over the text, but will need someone to provide me with the latex for the equations.
 
  • #18
Greg Bernhardt said:
but will need someone to provide me with the latex for the equations.
I have posted the contents of the files above. But note that there are three files: one class file, one tex file and one bibliography file. These work well when I am compiling with PdfLaTeX + BibTeX, but I don't know if MathJax will support BibTeX.
 
  • Like
Likes benorin
  • #19
@Greg Bernhardt I would rather have my wisdom teeth pulled again than do that (joking ofc) let’s call that plan Zed.

I should be able to copy the code and reuse it simply somehow. But overleaf uses a bibtex file too and editor specific syntax/code whatever for numbering and intradocument links, references, subsections, custom latex commands there’s also a whole maze at the top of header info most of which is commented out with % .

There’s overleaf documentation on how to export a project to latex that I was hoping would preserve all that structure into a single latex .dvi file I think but I followed the directions given and it didn’t work correctly.

Greg do know our TeX Live version? Starts with YYYY like screenshot in post #6.
 
  • #20
Wrichik Basu said:
I have posted the contents of the files above. But note that there are three files: one class file, one tex file and one bibliography file. These work well when I am compiling with PdfLaTeX + BibTeX, but I don't know if MathJax will support BibTeX.
I can redo the the references no sweat. There’s only four and in Wordpress I can just google a citation maker webpage and copy+paste. Easy peasy lemon squeezy.
 
  • Like
Likes Wrichik Basu
  • #22
benorin said:
What Operating System is your Latex editor running under @Wrichik Basu ?
Ubuntu 20.04.
 
  • #24
benorin said:
@Wrichik Basu in a terminal window issue the command below

tex --version

And tell me the answer please?
Terminal output:
MiKTeX-TeX 4.4 (MiKTeX 22.7)
© 1982 D. E. Knuth; all rights are reserved.
TeX is a trademark of the American Mathematical Society
using bzip2 version 1.0.8, 13-Jul-2019
compiled with curl version 7.68.0; using libcurl/7.68.0 OpenSSL/1.1.1f zlib/1.2.11 brotli/1.0.7 libidn2/2.2.0 libpsl/0.21.0 (+libidn2/2.2.0) libssh/0.9.3/openssl/zlib nghttp2/1.40.0 librtmp/2.3
compiled with expat version 2.2.9; using expat_2.2.9
compiled with liblzma version 50020042; using 50020042
compiled with MiKTeX Application Framework version 4.4; using 4.4
compiled with MiKTeX Core version 4.12; using 4.12
compiled with MiKTeX Archive Extractor version 4.0; using 4.0
compiled with MiKTeX Package Manager version 4.7; using 4.7
compiled with openssl version OpenSSL 1.1.1f  31 Mar 2020; using OpenSSL 1.1.1f  31 Mar 2020
compiled with uriparser version 0.9.3
compiled with zlib version 1.2.11; using 1.2.11
 

What is a DVI file?

A DVI (Device Independent) file is a type of file format that contains the output of a TeX or LaTeX document. It is typically used for creating documents with complex mathematical equations and symbols.

What is LaTeX?

LaTeX is a typesetting system used for creating technical and scientific documents. It is based on the TeX typesetting language and is widely used for creating documents with complex mathematical equations and symbols.

Why do I need an editor for DVI files?

An editor for DVI files is necessary because DVI files cannot be directly viewed or edited by most applications. They require a specialized editor that can convert the DVI code into a readable format.

What is the best editor for DVI files?

The best editor for DVI files depends on personal preference and the specific needs of the user. Some popular options include TeXstudio, TeXworks, and TeXnicCenter.

Can I convert DVI files to other formats?

Yes, DVI files can be converted to other formats such as PDF, HTML, and PostScript using various tools and software. However, the conversion process may result in some loss of formatting or functionality, so it is important to choose a reliable and accurate converter.

Similar threads

  • MATLAB, Maple, Mathematica, LaTeX
Replies
1
Views
7K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
3
Views
209
  • MATLAB, Maple, Mathematica, LaTeX
Replies
4
Views
3K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
8
Views
3K
Back
Top