- #1
laser
- 52
- 7
- Homework Statement
- Direction of electric field vector on the surface of charged conductor
- Relevant Equations
- F=ma
Consider a negatively charged spherical conductor. On the surface of it, what is the direction of its electric field? Well, the definition of the direction of an electric field is the direction a positive test charge would go if placed at that point. But... it wouldn't move anywhere! So is the electric field here zero? Probably not, but I can't find any information about it online.
Also, what if we considered a positively charged spherical conductor to start with? I mean, according to Newton's Shell Theorem, any particle outside the surface feels a force as if all of the charge were concentrated at its centre. But I'm not convinced that the particle is truly "outside the surface." Rather, it's "on" the surface!
Also, what if we considered a positively charged spherical conductor to start with? I mean, according to Newton's Shell Theorem, any particle outside the surface feels a force as if all of the charge were concentrated at its centre. But I'm not convinced that the particle is truly "outside the surface." Rather, it's "on" the surface!