Average momentum of an avalanche

  • Thread starter I_Try_Math
  • Start date
  • Tags
    Momentum
  • #1
I_Try_Math
59
15
Homework Statement
What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/ m^3 for the snow.
Relevant Equations
##\rho## = mv
##m_s## = mass of snow
##V_s## = volume of snow
##\vec{v}## = velocity of snow
D = density of snow

##\rho_{avg} = \frac{\rho}{V_s}##
##=\frac{m_s \vec{v}}{V_s}##
##=\frac{V_s D \vec{v}}{V_s}##
##=D \vec{v}##
##=350 \frac{1,000}{5.5}##
##=63,636.4##
The textbook's answer is ##1.3 \times 10^9##. I guess I must not be understanding what's meant by "average momentum" since my answer is wrong. Any help is appreciated.
 
Physics news on Phys.org
  • #2
I_Try_Math said:
Homework Statement: What is the average momentum of an avalanche that moves a 40-cm-thick layer of snow over an area of 100 m by 500 m over a distance of 1 km down a hill in 5.5 s? Assume a density of 350 kg/ m^3 for the snow.
Relevant Equations: ##\rho## = mv

##m_s## = mass of snow
##V_s## = volume of snow
##\vec{v}## = velocity of snow
D = density of snow

##\rho_{avg} = \frac{\rho}{V_s}##
##=\frac{m_s \vec{v}}{V_s}##
##=\frac{V_s D \vec{v}}{V_s}##
##=D \vec{v}##
##=350 \frac{1,000}{5.5}##
##=63,636.4##
The textbook's answer is ##1.3 \times 10^9##. I guess I must not be understanding what's meant by "average momentum" since my answer is wrong. Any help is appreciated.
That calculation doesn't make a lot of sense. First things first: How would you define average momentum for an avalanche?
 
  • Like
Likes I_Try_Math
  • #3
How do you know that your answer is wrong? You quote numbers without units so both you and the texbook can be correct in principle. Had you used units, you would have seen that momentum over volume, your starting equation, does not have units of momentum because it is divided by volume.
 
  • Informative
Likes I_Try_Math
  • #4
PeroK said:
That calculation doesn't make a lot of sense. First things first: How would you define average momentum for an avalanche?
I suppose you could define it as ##mv_{avg}##?
 
  • #5
That would work.
 
  • Like
Likes PeroK, I_Try_Math and MatinSAR
  • #6
kuruman said:
How do you know that your answer is wrong? You quote numbers without units so both you and the texbook can be correct in principle. Had you used units, you would have seen that momentum over volume, your starting equation, does not have units of momentum because it is divided by volume.
Right I will keep that in mind. Found out my original answer has units ##\frac{kg}{m^2s}##. Obviously incorrect. I worked through it and got the correct answer.
 
  • Like
Likes kuruman

Similar threads

Replies
13
Views
794
  • Introductory Physics Homework Help
Replies
8
Views
2K
Replies
1
Views
248
  • Introductory Physics Homework Help
Replies
5
Views
770
  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Classical Physics
Replies
4
Views
837
  • Introductory Physics Homework Help
Replies
1
Views
5K
  • Introductory Physics Homework Help
Replies
4
Views
653
  • Introductory Physics Homework Help
Replies
13
Views
2K
  • Introductory Physics Homework Help
Replies
1
Views
2K
Back
Top